152 research outputs found

    Symmetry reduction and heuristic search for error detection in model checking

    Get PDF
    The state explosion problem is the main limitation of model checking. Symmetries in the system being verified can be exploited in order to avoid this problem by defining an equivalence (symmetry) relation on the states of the system, which induces a semantically equivalent quotient system of smaller size. On the other hand, heuristic search algorithms can be applied to improve the bug finding capabilities of model checking. Such algorithms use heuristic functions to guide the exploration. Bestfirst is used for accelerating the search, while A* guarantees optimal error trails if combined with admissible estimates. We analyze some aspects of combining both approaches, concentrating on the problem of finding the optimal path to the equivalence class of a given error state. Experimental results evaluate our approach

    Abstraction in directed model checking

    Get PDF
    Abstraction is one of the most important issues to cope with large and infinite state spaces in model checking and to reduce the verification efforts. The abstract system is smaller than the original one and if the abstract system satisfies a correctness specification, so does the concrete one. However, abstractions may introduce a behavior violating the specification that is not present in the original system. This paper bypasses this problem by proposing the combination of abstraction with heuristic search to improve error detection. The abstract system is explored in order to create a database that stores the exact distances from abstract states to the set of abstract error states. To check, whether or not the abstract behavior is present in the original system, effcient exploration algorithms exploit the database as a guidance

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Graphical Verification of a Spatial Logic for the Graphical Verification of a Spatial Logic for the pi-calculus

    Get PDF
    The paper introduces a novel approach to the verification of spatial properties for finite [pi]-calculus specifications. The mechanism is based on a recently proposed graphical encoding for mobile calculi: Each process is mapped into a (ranked) graph, such that the denotation is fully abstract with respect to the usual structural congruence (i.e., two processes are equivalent exactly when the corresponding encodings yield the same graph). Spatial properties for reasoning about the behavior and the structure of pi-calculus processes are then expressed in a logic introduced by Caires, and they are verified on the graphical encoding of a process, rather than on its textual representation. More precisely, the graphical presentation allows for providing a simple and easy to implement verification algorithm based on the graphical encoding (returning true if and only if a given process verifies a given spatial formula)

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    Counterpart semantics for a second-order mu-calculus

    Get PDF
    We propose a novel approach to the semantics of quantified μ-calculi, considering models where states are algebras; the evolution relation is given by a counterpart relation (a family of partial homomorphisms), allowing for the creation, deletion, and merging of components; and formulas are interpreted over sets of state assignments (families of substitutions, associating formula variables to state components). Our proposal avoids the limitations of existing approaches, usually enforcing restrictions of the evolution relation: the resulting semantics is a streamlined and intuitively appealing one, yet it is general enough to cover most of the alternative proposals we are aware of

    Action planning for graph transition systems

    Get PDF
    Graphs are suitable modeling formalisms for software and hardware systems involving aspects such as communication, object orientation, concurrency, mobility and distribution. State spaces of such systems can be represented by graph transition systems, which are basically transition systems whose states and transitions represent graphs and graph morphisms. In this paper, we propose the modeling of graph transition systems in PDDL and the application of heuristic search planning for their analysis. We consider different heuristics and present experimental results

    Where Is the Power? Transnational Networks, Authority and the Dispute over the Xayaburi Dam on the Lower Mekong Mainstream

    Get PDF
    Accounts of hydro-hegemony and counter hydro-hegemony provide state-based conceptions of power in international river basins. However, authority should be seen as transnationalized as small states develop coping strategies to augment their authority over decision-making processes. The article engages Rosenau’s spheres of authority concept to argue that hydro-hegemony is exercised by actors embedded in spheres of authority that reshape actor configurations as they emerge. These spheres consist of complex networks challenging customary notions of the local-global dichotomy and hydro-hegemony. Hydro-hegemony is therefore not fixed. The article examines these processes by analysing the dispute over the Xayaburi Dam in the Mekong Basin

    Constraint Design Rewriting

    Get PDF
    We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks. The main idea is to consider classes of constraint networks as algebras whose operators are used to denote constraint networks with terms. Constraint network transformations such as constraint propagations are specified with rewrite rules exploiting the network’s structure provided by terms

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax
    corecore